Pandas Note 1
Pandas note #
Find all nan values in df
# Below are the quick examples
# Example 1: Count the NaN values in single column
nan_count = df['Fee'].isna().sum()
# Example 2: Count NaN values in multiple columns of DataFrame
nan_count = df.isna().sum()
# Example 3: Count NaN values of whole DataFrame
nan_count = df.isna().sum().sum()
# Example 4: Count the NaN values in single row
nan_count = df.loc[['r1']].isna().sum().sum()
# Example 5: Count the NaN values in multiple rows
nan_count = df.isna().sum(axis = 1)
Find unique value
# Find unique values in all columns
for col in df:
print(df[col].unique())
output:
['A' 'B' 'C']
['East' 'West']
[11 8 10 6 5]
# Find unique value in one column
df.team.unique()
output:
array(['A', 'B', 'C'], dtype=object)
# Find and sort
#find unique points values
points = df.points.unique()
#sort values smallest to largest
points.sort()
#display sorted values
points
output:
array([ 5, 6, 8, 10, 11])
# Find and Count Unique Values in a Column
df.team.value_counts()
output:
A 3
B 2
C 1
Name: team, dtype: int64
#count unique values in each column
df.nunique()
#count unique values in each row
df.nunique(axis=1)
Fillna method (fill nan with mean of one column)
df['price'].fillna(df['price'].mean(), inplace = True)
#fill given number
df_obj.fillna('66.0') # 使用66.0替换缺失值
df_obj.fillna({'A': 4.0, 'B': 5.0}) # 指定列填充数据
df.fillna(method='ffill') # 使用前向填充的方式替换空值或缺失值
df_obj.dropna() # 删除数据集中的空值和缺失值
Row count
rows_count = len(df.index)
rows_count = len(df.axes[0])
rows_count = df.shape[0]
rows_count = df.count()[0]
#School/Homework #School/Note